跳到主要內容區塊

國立臺灣大學化學系

師資列表

許良彥


許良彥
合聘教授
中央研究院原分所 362室
電話: 02-2362-4962
傳真:
實驗室
研究興趣

  • 奈米電子學 (分子電子學)

  • 奈米尺度下量子輸送理論 (電子輸送, 激子輸送, 熱輸送, 自旋輸送)

  • 奈米尺度下光與物質的交互作用 (螢光共振能量轉移與光譜)

  • 電磁極化子化學 (宏觀量子電動力學在化學的應用)

簡歷

  • 民國94年,臺灣大學化學系學士

  • 民國97年,臺灣大學化學系碩士

  • 民國104年,美國普林斯頓大學化學系博士

  • 民國104至105年,美國普林斯頓大學化學系博士後研究

  • 民國105年至106年,美國西北大學化學系博士後研究

  • 民國106年至110年,臺灣中央研究院原子與分子科學研究所助研究員

  • 民國110年迄今,台灣中央研究院原子與分子科學研究所副研究員

榮譽事項

  • 台灣大學書券獎

  • 民國94年,台灣大學陳安泰醫師研究獎學金

  • 民國96年,台灣大學理學院院長獎

  • 民國96年,台灣大學顏氏論文獎

  • 民國96年,財團法人中技社科技研究獎學金

  • 民國100年,美國普林斯頓大學Stephen P.A. Fodor*85 Fellowship

  • 民國104年,美國普林斯頓大學 Margaret and Herman Sokol Fellowship in Chemistry

  • 民國109年,傑出人才發展基金會年輕學者創新獎

  • 民國109年,科技部吳大猷先生紀念獎

  • 民國110年,中央研究院前瞻計畫

  • 民國111年,國立臺灣大學110學年度教學傑出教師

代表著作

  1. Wang, S.; Chuang, Y.-T.; Hsu, L.-Y.*; Simple but Accurate Estimation of Light-Matter Coupling Strength and Optical Loss for a Molecular Emitter Coupled with Photonic Modes, J. Chem. Phys., 2021, 155, 134117. (Special Issue: “Advances in Modeling Plasmonic Systems”)

  2. Wei, Y.-C.; Lee, M.-W.; Chou, P.-T.; Scholes. G. D.; Schatz, G. C.; Hsu, L.-Y.*; Can Nanocavities Significantly Enhance Resonance Energy Transfer in a Single Donor–Acceptor Pair? J. Phys. Chem. C, 2021, 125, 18119-18128. (Special Issue: “125 Years of The Journal of Physical Chemistry”)

  3. Lee, M.-W.; Chuang, Y.-T.; Hsu, L.-Y.*; Theory of Molecular Emission Power Spectra. II. Angle, Frequency, and Distance Dependence of Electromagnetic Environment Factor of a Molecular Emitter in Plasmonic Environments, J. Chem. Phys., 2021, 155, 074101. (Special Issue: “2021 JCP Emerging Investigators Special Collection”)

  4. Hsu, L.-Y.*; Yen, H.-C.; Lee, M.-W.; Sheu, Y.-L.; Chen, P.-C.; Dai, H*; Chen, C.-C.*; Large-Scale Inhomogeneous Fluorescence Plasmonic Silver Chips: Origin and Mechanism, Chem (Cell), 2020, 6, 3396-3408.

  5. Wang, S; Lee, M.-W.; Chuang, Y.-T.; Scholes, G. D.*; Hsu, L.-Y*; Theory of Molecular Emission Power Spectra. I. Macroscopic Quantum Electrodynamics Formalism." J. Chem. Phys., 2020, 153, 184102. (Special Issue: “Excitons: Energetics and Spatio-temporal Dynamics”)

  6. Lee, M.-W.; Hsu, L.-Y.*; Controllable Frequency Dependence of Resonance Energy Transfer Coupled with Localized Surface Plasmon Polaritons, J. Phys. Chem. Lett., 2020, 11, 6796-6804.

  7. Wang, S; Scholes, G. D.*; Hsu, L.-Y.*; Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons, J. Phys. Chem. Lett., 2020, 11, 5948-5855. (Virtual Issue: "Polaritons in Physical Chemistry")

  8. Chiang, T.-M.; Hsu, L.-Y.*; Quantum Transport with Electronic Relaxation in Electrodes: Landauer-Type Formulas Derived from the Driven Liouville-von Neumann Approach, J. Chem. Phys., 2020, 153, 044103. (Special Issue: “JCP Emerging Investigators Special Collection”)

  9. Wang. S; Scholes. G. D.*; Hsu, L.-Y.*; Quantum Dynamics of a Molecular Emitter Strongly Coupled with Surface Plasmon Polaritons: A Macroscopic Quantum Electrodynamics Approach, J. Chem. Phys., 2019, 151, 014105.  (Editor’s Pick, Editor's Choice in 2019, Invited Article, Special Issue"Dynamics of Open Quantum Systems")

  10. Wu, J.-S.; Lin, Y.-C.; Sheu, Y.-L.; Hsu, L.-Y.*, Characteristic Distance of Resonance Energy Transfer Coupled with Surface Plasmon Polaritons,  J. Phys. Chem. Lett., 2018, 9, 7032-7039.

  11. Fu, B;  Mosquera, M. A.; Schatz, G. C., Ratner M. A.; Hsu, L.-Y.*; Photoinduced Anomalous Coulomb Blockade and the Role of Triplet States in Electron Transport through an Irradiated Molecular Transistor, Nano Lett., 2018, 18, 5015-5023.

  12. Hsu, L.-Y.; Ding, W. D.; Schatz, G. C.*; Plasmon-Coupled Resonance Energy Transfer, J. Phys. Chem. Lett., 2017, 8, 2357-2367. (Chosen as a Cover Article).

  13. Sheu, Y.-L.; Wu, H.-T.*; Hsu, L.-Y.*; Exploring Laser-Driven Quantum Phenomena from a Time-Frequency Analysis Perspective: A Comprehensive Study, Opt. Express, 2015, 23, 30459-30482.

  14. Ting, T.-C.; Hsu, L.-Y.; Huang, M.-J.; Homg, E.-C.; Lu, H.-C.; Hsu, C.-H.; Jiang, C.-H.; Jin, B.-Y.*; Peng, S.-M.*; Chen, C.-H.*; Mechanisms and Characteristics of Energy-Level Alignment for Single-Molecule Conductance, Angew. Chem. Int. Ed., 2015, 54, 15734-15738. (Chosen as a very important paper).

  15. Liao, K.-C.; Hsu, L.-Y.; Bowers, C. M.; Rabitz, H*; Whitesides, G. M.*, Molecular Series-Tunneling Junctions, J. Am. Chem. Soc., 2015, 137, 5948-5954.

  16. Huang, M.-J.; Hsu, L.-Y.; Fu, M.-D.; Chuang, S.-T.; Tien, F.-W.; Chen, C.-H*, Conductance of Tailored Molecular Segments: a Rudimentary Assessment by Landauer Formulation, J. Am. Chem. Soc., 2014, 136, 1832-1841.

  17. Hsu, L.-Y.*; Wu, N.; Rabitz, H*, Gate Control of the Conduction Mechanism Transition from Tunneling to Thermally Activated Hopping, J. Phys. Chem. Lett., 2014, 5, 1831-183.

  18. Hsu, L.-Y.*; Li, E. Y.*; Rabitz, H.*, Single-Molecule Electric Revolving Door, Nano Lett., 2013, 13, 5020-5025.

  19. Hsu, L.-Y.; Rabitz, H.*, Single-Molecule Phenyl-Acetylene-Macrocycle-Based Optoelectronic Switch Functioning as a Quantum-Interference-Effect Transistor, Phys. Rev. Lett., 2012, 109, 186801.

更新日期: 2022-08-03