Skip to main content

台大化工系網站英文版

歐德理 副教授 / Leigh Aldous Associate Professor

Thermogalvanic research laboratory 熱電化學研究室 (02)3366-3031 BLDG.II leighaldous@ntu.edu.tw 二熱電化學廢熱收集、電化學、生質能加工、永續化學工程 Thermogalvanic waste heat harvesting、 Electrochemistry 、 Biomass processing、 Sustainable Chemistry & Engineering (02)3366-3022 歐德理 Leigh Aldous 化工二館(鄭江樓) CheE BLDG.II 副教授 Associate Professor N308 二館 N415
    • Education Background
      • B.S. in Colour and Polymer Chemistry, University of Leeds, England, 2001-2004
      • Ph.D. in Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland, 2004-2007
      • Postdoc in Chemistry and Chemical Engineering, Queen’s University Belfast, Northern Ireland, 2007-2009
      • Postdoc in Physical and Theoretical Chemistry, University of Oxford, England, 2009-2011
      • Lecturer, School of Chemistry, UNSW Sydney, Australia, 2011-2016
      • Senior Lecturer, Department of Chemistry, King’s College London, 2017-2023
      • Visiting Senior Lecturer, Department of Chemistry, King’s College London, 2023-2024
      • Associate Professor, Department of Chemical Engineering, National Taiwan University, Taiwan, 2024-onwards.

     

    • Recent Research Topic

    Thermogalvanic waste heat harvesting

    Our research focusses upon applying new electrolytes and materials towards to chemical conversion of waste heat into electricity. Despite heat making up most waste energy, few methods exist to exploit small temperature gradients (like in industry, between the inside and outside of a building, body heat, etc.). Entropy-driven redox chemistry is a simple and potentially sustainable method converting this waste into useful electricity.

    Electrochemistry

    Electrochemistry is increasingly important and we are interested in its wide range of applications, from batteries through to electrosynthesis through to the next generation of sensors.

    Biomass processing

    Waste biomass material is a potentially sustainable chemical feedstock, to replace our extreme reliance upon the petrochemical industry for chemicals; we are interested in how novel solvents can be applied to this process.
     

     

    1. D.A. Koomson, J.H. Nicholson, A.P.S. Brogan(*), L. Aldous(*), “Re-assessing viologens for modern bio-electrocatalysis” Chemical Science 2024, 15, 9325-9332.
    2. K. Laws, M.A. Buckingham, L. Aldous(*), “Self-Assembled Monolayers for Electrostatic Electrocatalysis and Enhanced Electrode Stability in Thermogalvanic Cells” Chemical Science 2024, 15, 6958–6964.
    3. K. Laws, M.A. Buckingham, M. Farleigh, M. Ma, L. Aldous(*), “High Seebeck coefficient thermogalvanic cells via the solvent-sensitive charge additivity of cobalt 1,8-diaminosarcophagine” Chemical Communications 2023, 59, 2323-2326.
    4. Y. Zhou, S. Zhang, M.A. Buckingham, L. Aldous, et al. “Novel porous thermosensitive gel electrolytes for wearable thermo-electrochemical cells” Chemical Engineering Journal 2022, 449, 137775.
    5. M.A. Trosheva, M.A. Buckingham, L Aldous(*), “Direct measurement of the genuine efficiency of thermogalvanic heat-to-electricity conversion in thermocells” Chemical Science 2022, 13 (17), 4984-4998 (“Most popular 2022 Materials and Energy Articles”).
    6. M.A. Buckingham, F. Stoffel, S. Zhang, Y. Liu, F. Marken, J. Chen, L. Aldous(*), “Nanostructuring Electrode Surfaces and Hydrogels for Enhanced Thermocapacitance” ACS Applied Nano Materials 2022, 5 (1), 438-445.
    7. M.A. Buckingham, K. Laws, E. Cross, A.J. Surman, L. Aldous(*), “Developing iron-based anionic redox couples for thermogalvanic cells: Towards the replacement of the ferricyanide/ferrocyanide redox couple” Green Chemistry, 2021, 23, 8901-8915 (“2021 Green Chemistry Hot Article”).
    8. M.A. Buckingham, S. Zhang, Y.Q. Liu, J. Chen, F. Marken, L. Aldous(*), “Thermogalvanic and Thermocapacitive Behavior of Superabsorbent Hydrogels for Combined Low-Temperature Thermal Energy Conversion and Harvesting” ACS Applied Energy Materials, 2021, 4, 11204-11214.
    9. M.A. Buckingham, K. Laws, H.X. Li, Y.F. Kuang, L. Aldous(*), “Thermogalvanic cells demonstrate inherent physiochemical limitations in redox-active electrolytes at water-in-salt concentrations” Cell Reports Physical Science, 2021, 2, 100510.
    10. R.A. Grothe, A. Lobato, B. Mounssef, N. Tasi, A.A.C. Braga, M.O. Maldaner, L. Aldous, T.R.L.C. Paixao, L.M. Goncalves, “Electroanalytical profiling of cocaine samples by means of an electropolymerized molecularly imprinted polymer using benzocaine as the template molecule” Analyst, 2021, 146, 1747-1759.
    11. Y.T. Zhou, Y.Q. Liu, M.A. Buckingham, S. Zhang, L. Aldous, S. Beirne, G. Wallace, J. Chen, “The significance of supporting electrolyte on poly (vinyl alcohol) - iron(II)/iron(III) solid -state electrolytes for wearable thermo-electrochemical cells” Electrochemistry Communications, 2021, 124, 106938.
    12. Y.Q. Liu, S. Zhang, Y.T. Zhou, M.A. Buckingham, L. Aldous, P.C. Sherrell, G.G. Wallace, G. Ryder, S. Faisal, D.L. Officer, S. Beirne, J. Chen, “Advanced Wearable Thermocells for Body Heat Harvesting” Advanced Energy Materials, 2020, 10, 2002539.
    13. M.A. Buckingham, K. Laws, J.T. Sengel, L. Aldous(*), “Using iron sulphate to form both n-type and p-type pseudo-thermoelectrics: non-hazardous and 'second life' thermogalvanic cells” Green Chemistry, 2020, 22, 6062-6074 (“2020 Green Chemistry Hot Article”).
    14. M.A. Buckingham, L. Aldous(*), “Thermogalvanic cells: A side-by-side comparison of measurement methods” Journal of Electroanalytical Chemistry, 2020, 872, 114280.
    15. R.A.S. Couto, B. Mounssef, F. Carvalho, C.M.P. Rodrigues, A.A.C. Braga, L. Aldous, L.M. Goncalves, M.B. Quinaz, “Methylone screening with electropolymerized molecularly imprinted polymer on screen-printed electrodes”, Sensors and Actuators B – Chemical, 2020, 316, 128133.
    16. M.A. Buckingham, S. Hammoud, H.X. Li, C.J. Beale, J.T. Sengel, L. Aldous(*), “A fundamental study of the thermoelectrochemistry of ferricyanide/ferrocyanide: cation, concentration, ratio, and heterogeneous and homogeneous electrocatalysis effects in thermogalvanic cells” Sustainable Energy & Fuels, 2020, 4, 3388-3399.
    17. H.A.H. Alzahrani, M.A. Buckingham, W.P. Wardley, R.D. Tilley, N. Ariotti, L. Aldous(*), “Gold nanoparticles immobilised in a superabsorbent hydrogel matrix: facile synthesis and application for the catalytic reduction of toxic compounds”, Chemical Communications, 2020, 56, 1263-1266.
    18. M.M. Hossain, A. Rawal, L. Aldous(*), “Aprotic vs Protic Ionic Liquids for Lignocellulosic Biomass Pretreatment: Anion Effects, Enzymatic Hydrolysis, Solid-State NMR, Distillation, and Recycle”, ACS Sustainable Chemistry & Engineering, 2019, 7, 11928-11936.
    19. P. Zheng, A. Eskandari, C. Lu, K. Laws, L. Aldous(*), K. Suntharalingam(*), “Biophysical analysis of cancer stem cell-potent copper (II) coordination complexes” Dalton Transactions, 2019, 48, 5892-5896.
    20. H.A.H. Alzahrani, M.A. Buckingham, F. Marken, L. Aldous(*), “Success and failure in the incorporation of gold nanoparticles inside ferri/ferrocyanide thermogalvanic cells” Electrochemistry Communications, 2019, 102 , 41-45.